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Abstract— Screening tests are an effective tool for the diagno-
sis and prevention of several diseases. Unfortunately, in order
to produce an early diagnosis, the huge number of collected
samples has to be processed faster than before. In particular this
issue concerns image processing procedures, as they require a
high computational complexity, which is not satisfied by modern
software architectures. To this end, Field Programmable Gate
Arrays (FPGAs) can be used to accelerate partially or entirely
the computation. In this work, we demonstrate that the use
of FPGAs is suitable for biomedical application, by proposing
a case of study concerning the implementation of a vessels
segmentation algorithm. The experimental results, computed on
DRIVE and STARE databases, show remarkable improvements
in terms of both execution time and power efficiency (6X and
5.7X respectively) compared to the software implementation.
On the other hand, the proposed hardware approach out-
performs literature works (3X speedup) without affecting the
overall accuracy and sensitivity measures.

I. INTRODUCTION

Nowadays, several applications in the biomedical field
have to guarantee different requirements. Indeed, while the
accuracy remains the main requirement, performance, in
terms of execution time, is becoming relevant as well. For
instance, this aspect is critical when we consider applications,
like screening tests, that require to elaborate a huge amount
of data from a database. In this case, a faster execution could
improve efficiency and produce earlier diagnoses.

In order to speed up the computation, a possible solution
consists in employing hardware accelerators to increase
the performance of this kind of applications. Indeed, since
most of these algorithms are based on image processing
techniques, they may drastically benefit from a hardware
acceleration on devices like Field Programmable Gate Arrays
(FPGAsS). In particular, FPGAs are highly suitable for such
applications, where they offer a better performance-per-watt
ratio with respect to Central Processing Units (CPUs) and
Graphics Processing Units (GPUs). Moreover, thanks to their
reconfiguration capabilities, FPGAs result more flexible than
Application-Specific Integrated Circuits (ASICs).

The purpose of this work is to emphasize the benefits of a
hardware acceleration on FPGA for biomedical applications,
in terms of both execution time and power consumption.
To this end, we selected as case study a biomedical appli-
cation that leverages vessels segmentation techniques. This
technique is used along with preventive screening techniques
to detect ocular diseases, such as diabetic retinopathy and
degenerative maculopathy, and other pathologies. This kind
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of application is particularly suited for diseases as diabetic
retinopathy which is a consequence of diabetes and it is
caused by a metabolic decompensation. We aim to accelerate
a vessels segmentation algorithm in order to streamline the
preprocessing phase of a bigger screening algorithm, which
can require a high time processing. Two public databases
have been used to evaluate our work: DRIVE [1] and STARE
[2]. Both databases are made up of 20 images (dimensioned
respectively 768x584 pixels and 605x700 pixels). Each im-
age has its corresponding processed one [3].
This work intends to make the following contributions:

e To demonstrate that the chosen platform is suitable
for biomedical applications, embeddable within exist-
ing instrumentation or prone to be used in embedded
applications, thanks to its performing features.

o To highlight the advantages of a hardware implemen-
tation for biomedical applications in term of compu-
tational speed, which becomes critical when dealing
with large databases (where results are still needed
in a reasonable time to make prompt decision) and
for monitoring of patients (where the resolution is
dependent on the speed of the computation in the chosen
architecture).

« To use the vessel segmentation as a case study, with
an accent on the screening for diabetic retinopathy,
highlighting the advantages in an automatic monitoring
both in public and private infrastructures.

The rest of the paper is organized as follows. Section II
discusses the literature on software and hardware implemen-
tations of retinal vessel segmentation algorithms. Section III
describes in details the proposed algorithm and methodol-
ogy, while Section IV presents the experimental evaluation.
Finally, Section V draws the conclusions.

II. RELATED WORK

Different implementations of retinal vessel segmentation
algorithms taken from machine learning field are available
in the state of the art. These algorithms can be clustered into
few main categories [3]: Pattern recognition techniques focus
on identifying regularities in data in order to classify retinal
blood vessel features and other non vessel objects including
background. Tracking-based methods found the extraction of
vessels on statistical morphological operators. Mathematical
morphology techniques adopt topological and geometrical
continuous-space concepts. Multi-scale approaches are based
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on widths gradual decrease from the optic disc [4]. Model
based approaches apply an explicit vessel models (classical
or deformable) to extract the retinal vessels [5]. Matched
filters involve the convolution of a 2D-kernel with the image,
in order to indicate the presence of a given feature. Neural
networks are a graph based approach, which detects the
vessels structures as a human brain would do.

Our algorithm can be classified as a matched filter. This
technique has been chosen due to the high performance it
provides and its structure which is very suitable for an FPGA.
Matched filter has already been exploited in several works.
In [6], the authors apply a two-dimensional linear kernel
with a Gaussian profile for the segmentation. Moreover, 12
different templates were used to search the shape of the
vessel along the most likely directions. The authors of [7]
propose a general framework for adaptive local threshold-
ing based on a verification-based multi-threshold probing
scheme. The application is based on a verification procedure
that incorporates specific tests about blood vessel features.
The work in [8] uses an exhaustive search optimization
technique. Parameters such as matched filter size and thresh-
old value were found by testing the algorithm on DRIVE
database images. The algorithm proposed in [9] comprises
a matched filter based on a zero-mean Gaussian function
and its first-order derivative. The vessels are detected by
thresholding the response to the matched filter, while the
threshold value is adjusted using the image response to the
first-order derivative. The work in [10] reports an hybrid
model of matched filter and ant colony algorithm. The
method proposed in [11] is based on the analysis of the phase
congruency of the retinal image, which is a soft-classification
of blood vessels. The phase congruency is computed using
Log-Gabor wavelets [12]. The article in[13], a Gabor filter
bank is used for the segmentation and textons are used for
the filter responses. The corresponding functions are used
as the framework for the classification into vessel and non-
vessel classes. The work described in [14] is based on a
matched filter technique as well. An illumination correction
and contrast equalization are applied before the matched filter
and followed by morphological operators.

While the works previously mentioned propose software
implementations, other works focus on accelerating vessel
segmentation on matched filters using hardware designs.

Proposed algorithm steps and filters

For instance, the work in [15] reports a hardware imple-
mentation on Xilinx Spartan 3 FPGA [16]. The presented
algorithm, based on [17], deals with pixel-level snakes, a
parallel active contour technique inspired by energy-based
deformable models. The authors of [18] present an imple-
mentation, on a Xilinx Spartan 6 board [19], of an algo-
rithm derived from the work in [6]. The implementation is
done using several optimizations, such as parallelization and
resource-sharing, in order to perform a real-time analysis.

III. PROPOSED METHODOLOGY

The proposed methodology consists in a pipeline of image
processing techniques that process an input retinal image in
order to detect the blood vessels. Following this methodol-
ogy, we implemented an algorithm for retinal vessel segmen-
tation which comprises four main steps: preprocessing, vessel
detection, vessel structure isolation and postprocessing, as
reported in Figure 1. Each of these main steps then involves
a series of different convolutional and matched filters.

A. Preprocessing

The preprocessing step prepares the image by removing
the noise before the detection step. At first, this step loads
the image and splits it into its 3 color channels. The step just
keeps the green channel, because it shows the best contrast
features for vessel segmentation [20]. On the other hand,
speckle noise, which is composed by pixels with a value
distant from the near ones, may be present into the input
image. In order to remove this kind of noise, the prepocessing
step applies a 3x3 median blur filter.

B. Vessel Detection

The vessel detection step is composed of three different
filters: matched, Gaussian and adaptive threshold filter.

At first, this step applies a particular version of the
matched filter, derived from works in [6] and [18]. Such
filter resembles an edge detection filter and convolves the
retinal image by means of 13 different 16x16 kernels in
order to keep the maximum response. More technically, each
kernel derives from a basic one (defined in [6]) rotated by
different degrees (from O to 180 in 15 degrees steps). The
basic kernel is a matrix composed by a series of values,
aligned in order to match the vertical direction of a vessel.
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The different rotations of the kernel are necessary to match
the image with different directions. Finally, the maximum
response represents a merge of the different filters, in order
to detect the vessels going in every possible direction.

Then, the vessel detection step applies a Gaussian blur
filter, in order to reduce the image sharpness.

Finally, the step applies a 9x9 adaptive threshold filter
to the maximum response, and produces a binary image
as output. The threshold is computed for each pixel as the
average of the neighboring pixels (in a 9x9 window). In this
way, each pixel is classified as background, if its value is
lower than the threshold, or vessel otherwise.

C. Vessel Structure Isolation

The resulting image from the vessel detection step has
a large number of small marks/spots, which represent false
positives. In the vessel structure isolation step the spots are
removed by means of a blob detection algorithm, followed
by a removal step. This algorithm works by detecting each
group of connected vessel pixels. To detect and compute the
area of each group, the algorithm analyzes each pixel upper
and left neighbor. If one of these two neighbors belongs to
an existing group, the current pixel is assigned to one of
them. Otherwise, if there are no upper and left pixels, a new
group is created and linked to the current pixel. In case of
conflicts between the neighboring pixels groups, the groups
are linked together.

Then, the blob removal step removes the groups with an
area smaller than a threshold (chosen in order to maximize
the accuracy in a given set of images).

D. Postprocessing

The postprocessing step purpose is to enhance the image
resulting from the previous steps. At first, this step applies
a 11x11 adaptive threshold filter to sharpen the details from
the previous steps. Then, the postprocessing step applies a
last 5x5 median blur in order to remove the remaining noise
from the final image, composed of single-pixel errors.

For the software implementation, there are several com-
puter vision libraries (such as OpenCV [21]) that can be
used to rapidly develop the filters. As for the hardware de-
velopment, each filter can be designed as a distinct hardware
module. Then, in order to create a pipeline of computation,
the modules are arranged in a chain, and the images are
elaborated with a streaming oriented approach. This helps to
reduce the required memory, and to speed up the execution.

IV. EXPERIMENTAL RESULTS

This section describes the experimental results. Section I'V-
A presents the implementation and experimental setup of
both software and hardware versions of our algorithm; Sec-
tion IV-B discusses the performance of these two imple-
mentations; Sections IV-C and IV-D compare our algorithm
performance with software and hardware implementations
in literature, respectively. The Key Performance Indicators
(KPIs) used in the evaluation are the accuracy and the latency
of the implementation. The accuracy is the ratio between

TABLE I
COMPARISON ON EXECUTION TIME AND POWER CONSUMPTION
BETWEEN SOFTWARE AND HARDWARE PROPOSED IMPLEMENTATIONS

. . Execution Power
Implementation Device . .
time consumption
Software Intel Core i7  0.06806 s 26.929 Wart
Hardware Zedboard 0.01041 s 4.749 Watt
TABLE II

SOFTWARE IMPLEMENTATIONS COMPARISON (ON DRIVE AND STARE)

Work Accuracy Sensitivity Time

DRIVE | STARE | DRIVE | STARE | DRIVE | STARE
[7] - 0.9337 - - - 19 s
[8] 0.9535 - - - Ils -
[9] 0.9382 | 0.9484 | 0.7120 | 0.7177 - 10 s
[10] 0.9293 - - - 35s -
[11] 0.8900 | 0.9093 - 0.8035 2s -
[13] 0.9430 - 0.7673 - -

[14] 0.9340 | 0.9341 0.7060 | 0.7847 3225 4.07 s
PA. 0.9293 | 0.9030 | 0.6457 | 0.7291 | 0.068 s | 0.073 s
TABLE III
HARDWARE IMPLEMENTATIONS COMPARISON
Work Device Accuracy  Execution time  Frequency
[15] Spartan 3 0.9100 1.40000 s 53 MHz
[18] Spartan 6 0.9007 0.03185 s 100 MHz
PA. Zedboard 0.9285 0.01041 s 100 MHz

the correctly classified pixels count and the total number
of pixels in the image. The latency represents the average
time to process a picture, and will be expressed both as a
time value and as the achieved speed up with respect to an
identical software implementation run on a high-performance
CPU and to other implementations in the state of the art.

A. Implementation and Experimental Setup

The Proposed Algorithm (P.A.) has been implemented
both in software and in hardware. The software imple-
mentation has been written in C++, using OpenCV [21]
libraries with CPU-specific optimizations. The test was run
on a Intel Core i7-6700 CPU [22]. On the other hand, the
target architecture for the hardware implementation is an
Avnet Zedboard [23] powered by a Xilinx Zyng-7000 All
Programmable System on Chip (APSoC). The chip includes
both a hardwired Dual-Core ARM Cortex A9 [24] and
a Xilinx Series-7 FPGA. This APSoC allows to have a
CPU and FPGA collaboration, which means that the ARM
processor is used for I/O operations while it delegates the
filters computations to the FPGA chip. The hardware design
has been developed using Xilinx Vivado Design Suite [25]
(Vivado, Vivado HLS and Vivado SDK, version 2015.3).
Finally, we measured power consumption by means of Intel
Power Gadget [26] and Energy Logger 4000 by Voltcraft
for the Intel Core i7-6700 CPU and Zedboard platform,
respectively.
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B. Software and Hardware Implementation Analysis

Table I reports the performance of software and hardware
implementations, in terms of power consumption of the target
devices and execution time for a generic image from DRIVE
database. The software implementation takes 0.06 seconds to
compute each image, while the average power consumption
is 26.929 Watt. On the other hand, the hardware implementa-
tion outperforms the software one, with an average execution
time of 0.01 seconds and a chip-level (CPU and FPGA)
average power consumption of 4.749 Watt. Therefore, the
hardware implementation is 6 times faster than the same
algorithm executed on a high-performance CPU, and 5.7
times more efficient in terms of power consumption.

C. Software Implementation Comparison

Table II reports the average values of accuracy and sensi-
tivity, as well as the execution time of both related works and
the software version of the proposed approach. The average
accuracy of the proposed algorithm, for DRIVE and STARE
databases, is respectively 0.9293 and 0.9030, whereas the ob-
tained sensitivity results are 0.6457 and 0.7291. Even though
the values of accuracy and sensitivity result few points lower
than those obtained in the other works, the strength of our
work is the speed of the computation, significantly faster than
the works in the state of the art. In fact, accuracy values
depend on the chosen algorithm, which can be better by
means of optimization in future.

D. Hardware Implementation Comparison

Finally, Table III compares accuracy and hardware perfor-
mance of the proposed implementation with respect to the
hardware ones. Proposed hardware implementation outper-
forms [15] and [18] in terms of both accuracy (0.9285 vs
0.91 and 0.9) and execution time (0.01 vs 1.4 and 0.03).

V. CONCLUSIONS

Retinal vessel segmentation is a challenging task and the
results of the extraction of the blood vessel structure are
crucial in order to diagnose diseases like diabetes. To this
end, this work presents an hardware implementation of a
vessel segmentation algorithm, whose performance makes
this work the one that can make way for using FPGAs in
biomedical and screening applications. We managed to find
a trade-off between accuracy and performance, in order to
speed up the process without losing precision.

The possibility to have a very low computation time,
allows to cut down on waiting times by providing a support
for real-time diagnosis. Finally, in our opinion, we have
demonstrated that hardware implementations and, in partic-
ular, FPGAs are suitable for biomedical applications as they
can provide a high throughput in large databases and real
time processing.
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